Unrestricted Grammars
Martha Kosa

The most important part of a grammar is its set of production rules because the
productions specify the structure of the generated strings. In a context-free grammar, the
form of each rule is very strict; the left-hand side must be a single nonterminal symbol,
and the right-hand side is any combination of terminal and/or nonterminal symbols. The
strict rule allow for simple parsing algorithms, such as the breadth-first top-down parsing
algorithm. What happens if we relax the restriction on the left-hand sides for grammar
rules? Anything goes now, as long as the left-hand sides are not {¥]. We cannot create
something from nothing. With the less restrictive left-hand sides, more languages can be
generated. They will not be context-free.

0011, and 000111. The following context-free grammar generates the language:

What happens if we make a slight change to the language. Consider the language

{0nann | n [¥] 0}. The first few strings in this language are {¥}, 012, 001122, and
000111222. We cannot make simple modifications to the above context-free grammar to
generate the language. The Context-Free Pumping Lemma can be used to prove that the
language is not context-free; thus, no context-free grammarexists to generate the
language.

We can think about a simple modification to the language that is context-free, produce a
context-free grammar for the modified langugage, and add some non-context-free rules to
that grammar to obtain our desired language.

Consider the language {0n(12)rl | n [¥] 0}. The first few strings in this language are [¥],
012, 001212, and 000121212.

You may have noticed that we had a few extra rules. The nonterminal symbol M is to
help distinguish between [¥] and nonempty valid strings. S derives, via leftmost

derivations, sentential forms of the form OOkM(lT)k12 for each k [¥]} 0. The next
leftmost derivation will apply the M {¥] [¥] rule to yield OOk(lT)k12.

We now will modify some rules to produce our desired language. Notice that every T
will be immediately followed by a 1. This will help us in developing our non-context-
free rules. We need to move the 1's to be before all the T's so they will be clustered

k. kk

the form 00" 11"T"2 for each k {¥] 0.

We cannot keep the rule T {¥] 2 any more because this will allow invalid strings to be
generated; we were not absolutely required to perform leftmost derivations. We will
modify this rule to use some context. We will complete our valid strings from right to
left. Notice that the rightmost T will be followed by 2 when k {¥] 1. We will replace the
T [¥] 2 rule with the non-context-free rule T2 (¥} 22. We can apply this rule k times.

Then we will have our desired 0"1™2", where n [®) 1. For n = 0, we just apply the S [¥]
[¥] rule. We show our modified grammar and a sample derivation.

Notice the grouping in the parse tree when the non-context-free rules are applied.

We also show the derivation so that you can see the ordering of the sentential forms.

JFLAP provides a feature to test if your grammar is context-free. Select Test > Test for
Grammar Type. If your grammar is not context-free (and our example is not), you will
see the following dialog box.

If you test a true context-free grammar, you will see the following dialog box.

Try It!
1. What happens when you attempt to parse the strings 012, 021, 102, 120, 210, and
201?
2. How many strings of length 6 over [¥] = {0,1,2} have two 0's, two 1's, and two
2's?

3. How many of those strings above does our grammar generate?

4. Produce a grammar to generate the language {hipnhopnhoomyn | n

5. Produce a grammar to generate the language {Onln22Il |n [¥] 0}.

] 0}.

Let's do another example. Suppose that we want to produce strings consisting of two
parts, where the first part is a word, and the second part is a formatted version of the
word, such as an underlined version. What is the corresponding language? Let us
assume that {¥] is our alphabet. For simplicity, we will repeat the word for the second
part and delimit it by square brackets. We assume that words will not contain square

KR
=

brackets. This yields {w[w]|w [¥] [¥] }. Some strings in the language are [] and
cool[cool]. We can consider this language to be a language of echoed strings. In the real
world, when you are setting up a new user account, you have to enter your proposed
password a second time for verification. This is analogous to an echo.

What happens if we try to use a context-free grammar? We need to make a copy of each
letter, and we need a left square bracket in the middle and a right square bracket at the
end. Here is our first attempt.

What happens when we try to parse cool[cool]?

The string is rejected. Let's investigate further by performing a user-controlled parse.

Try It!

1. Select Input > User Control Parse to begin.

2. Enter cool[cool] in the input box.

3. Push the Start button.

4. Select the appropriate grammar rule to apply. There is only one valid possibility
at this point. Push the Step button.

5. What is the current sentential form? Remember it can be found by concatentating
the leaves of the parse tree in left to right order.

6. Continue applying appropriate grammar rules (there will still only be one valid
possibility at each step) until you cannot apply them any more.

7. Why is the string rejected? What is the relationship between the substring before
the [and the substring between the [and the]?

Below is the result when all possible grammar rules have been applied.

This grammar produces strings of the form {W[WR] | w [¥] "}, where WR is the reverse
of w. It is impossible to produce a context-free grammar generating our desired
language; the Context-Free Pumping Lemma can help prove the impossibility result.

What can we do? We need to reverse the substring between the [and the]. We can add
some non-terminal symbols and some non-context-free rules. We can also distinguish
between empty and non-empty parts, as in the previous example.

Try It!
1. Select Input > Brute Force Parse to begin.
Enter cool[cool] in the input box.
Push the Start button.
Why is there a delay before you learn that the string is accepted?
Push the Step button as many times as necessary to parse the string. Your JFLAP
window should look like the following.

A

N —

Which grammar rules are responsible for generating all the characters before the
[and between the [and the]?

How many [symbols appear in each sentential form?

How many] symbols appear in each sentential form?

Select Derivation Table from the combo box where Noninverted Tree is.

Push the Start button again.

Which grammar rules are responsible for producing the correct order for the
symbols between the [and the]?

A

Questions to Think About:

1. How many rules are needed if [¥]
symbols be affected?

2. How many rules are needed if [¥]

={a, b, ..., z}? How will our set of nonterminal
={0,1,...,9}?

Try It!
1. Enter cool[coo] in the input box.
Push the Start button.
What is the result? Why?
Select Input > User Control Parse.
Push the Start button.
Attempt to apply grammar rules until you get stuck. You can use the Derivation
Table or the Noninverted Tree from the combo box. You should end up with
something similar to the following.

AN

You have just seen an example of a string that cannot be generated by our non-context-

free grammar. It does not consist of a substring followed by a [then a copy and then a
final].

In many programming languages that you use, variables must be declared before they are

used. This is a form of echoing. The language {int w; w=75; | w ¥]w | is not
context-free. How do the compiler writers handle this? The grammars already have
hundreds of rules; they don't need hundreds more. The compilers use lexical analysis to
break programs up into categories of tokens (variable names — identifiers, keywords —
such as if, predefined types — such as int, literals — such as decimal numbers, etc.).
Variable names are stored in data structures called symbol tables. Semantic actions are
used to simplify the grammars. Since the set of languages generated by context-free
grammars is equivalent to the set of languages generated by pushdown automata, context-
free grammars use stacks implicitly. Remember that stacks are FIFO data structures; we
need data structures that support more general access to handle declaration before use
with respect to variables. This makes us appreciate the compiler writers; without them,
we would have to program in machine code with 0's and 1's.

Congratulations! You have explored unrestricted grammars and have seen some practical
examples of non-context-free languages.

